Combinatorial Laplacian and entropy of simplicial complexes associated with complex networks
نویسندگان
چکیده
Abstract. Simplicial complexes represent useful and accurate models of complex networks and complex systems in general. We explore the properties of spectra of combinatorial Laplacian operator of simplicial complexes and show its relationship with connectivity properties of the Q-vector and with connectivities of cliques in the simplicial clique complex. We demonstrate the need for higher order analysis in complex networks and compare the results with ordinary graph spectra. Methods and results are obtained using social network of the Zachary karate club.
منابع مشابه
Vertex Decomposable Simplicial Complexes Associated to Path Graphs
Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...
متن کاملSome New Results on the Combinatorial Laplacian A THESIS PRESENTED IN PARTIAL FULFILLMENT OF CRITERIA FOR HONORS IN MATHEMATICS
In this thesis we discuss some new results concerning the combinatorial Laplace operator of a simplicial complex. The combinatorial Laplacian of a simplicial complex encodes information about the relationships between adjacent simplices in the complex. This thesis is divided into two relatively disjoint parts. In the first portion of the thesis, we derive a relationship between the Laplacian sp...
متن کاملShifted Simplicial Complexes Are Laplacian Integral
We show that the combinatorial Laplace operators associated to the boundary maps in a shifted simplicial complex have all integer spectra. We give a simple combinatorial interpretation for the spectra in terms of vertex degree sequences, generalizing a theorem of Merris for graphs. We also conjecture a majorization inequality for the spectra of these Laplace operators in an arbitrary simplicial...
متن کاملIsoperimetric inequalities in simplicial complexes
In graph theory there are intimate connections between the expansion properties of a graph and the spectrum of its Laplacian. In this paper we define a notion of combinatorial expansion for simplicial complexes of general dimension, and prove that similar connections exist between the combinatorial expansion of a complex, and the spectrum of the high dimensional Laplacian defined by Eckmann. In...
متن کاملA Relative Laplacian Spectral Recursion
The Laplacian spectral recursion, satisfied by matroid complexes and shifted complexes, expresses the eigenvalues of the combinatorial Laplacian of a simplicial complex in terms of its deletion and contraction with respect to vertex e, and the relative simplicial pair of the deletion modulo the contraction. We generalize this recursion to relative simplicial pairs, which we interpret as convex ...
متن کامل